Article ID Journal Published Year Pages File Type
1491738 Materials Research Bulletin 2009 5 Pages PDF
Abstract

In this paper, we report the successful synthesis of NiTiO3 microtubes constructed by nearly spherical nanoparticles via a simple solution-combusting method employing a mixture of ethanol and ethyleneglycol (V/V = 60/40) as the solvent, nickel acetate as the nickel source, tetra-n-butyl titanate as the titanium source and oxygen gas in the atmosphere as the oxygen source. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDS). The UV–vis absorption spectrum of the product showed two absorption peaks centered at 258.6 and 350.1 nm, respectively. The Brunauer–Emmett–Teller (BET) surface area of the product was 14.06 m2/g and the pore size distribution mainly located from 20 to 30 nm. The photocatalytic degradation property of the product for organic dyes showed that the as-obtained porous NiTiO3 microtubes could strongly promote the degradation of organic dyes including Pyronine B, Safranine T and Fluorescein.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,