Article ID Journal Published Year Pages File Type
1491784 Materials Research Bulletin 2008 8 Pages PDF
Abstract
The present work reports the effects caused by barium on phase formation, morphology and sintering of lead magnesium niobate-lead titanate (PMN-50PT). Ab initio study of 0.5Pb(Mg1/3Nb2/3)O3-0.5(BaxPb(1−x)TiO3) ceramic powders, with x = 0, 0.20, and 0.40 was proposed, considering that the partial substitution of lead by barium can reestablish the equilibrium of monoclinic-tetragonal phases in the system. It was verified that even for 40 mol% of barium, it was possible to obtain pyrochlore-free PMN-PT powders. The increase of the lattice parameters of PMN-PT doped-powders confirmed dopant incorporation into the perovskite phase. The presence of barium improved the reactivity of the powders, with an average particle size of 120 nm for 40 mol% of barium against 167 nm for the pure sample. Although high barium content (40 mol%) was deleterious for a dense ceramic, contents up to 20 mol% allowed 95% density when sintered at 1100 °C for 4 h.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,