Article ID Journal Published Year Pages File Type
1491794 Materials Research Bulletin 2008 7 Pages PDF
Abstract

Phase transitions and the mobility of proton-containing groups in hydrogen zirconium phosphate HZr2(PO4)3·nH2O with the NASICON structure were studied by X-ray powder diffraction, 1H, 31P NMR, IR spectroscopy and TG analysis. Heating HZr2(PO4)3·H2O above 420 K results in dehydration and in a rhombohedral–triclinic phase transition. Continued heating to about 490 K results in the thermal activation of cation disordering and phase transition of HZr2(PO4)3 from triclinic to rhombohedral phase. Parameter “a” of HZr2(PO4)3 lattice decreases during the heating. It is shown that oxonium ions in HZr2(PO4)3·H2O are characterized by high rotation and translation mobility. Rotation mobility of oxonium ions can be increased by the substitution of zirconium by yttrium or niobium.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,