Article ID Journal Published Year Pages File Type
1492192 Materials Research Bulletin 2005 7 Pages PDF
Abstract

The Mn2+-doped ZnS nanoparticles stabilized by sodium citrate were synthesized through a simple chemical route. Using the ZnS:Mn nanoparticles as seeds, the silica-coated ZnS:Mn nanocomposites were formed in isopropanol by the controlled hydrolysis of tetraethyl orthosilicate. The photoluminescence spectra confirmed that the Mn2+ ions were incorporated into the ZnS nanoparticles. The annealing effect on the structural and optical properties of these particles was studied over a range of 100–400 °C. The results of X-ray diffraction and photoluminescence showed that the silica shell not only improved the thermal stability but also resisted the lattice-deformation and oxidation of the particles. The thermal analysis further confirmed that the non-coated ZnS:Mn nanoparticles were unstable beyond 200 °C.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,