Article ID Journal Published Year Pages File Type
1492196 Materials Research Bulletin 2005 18 Pages PDF
Abstract

The preparation of thorium phosphate-diphosphate (Th4(PO4)4P2O7, TPD) was developed through the precipitation of thorium phosphate-hydrogenphosphate hydrate (Th2(PO4)2(HPO4)·H2O, TPHPH) at 150–160 °C in closed PTFE container or in autoclaves. From EPMA analyses and SEM observations, the initial precipitate was single phase and multilayered. The behaviour of TPHPH (orthorhombic system with a = 21.368(2) Å, b = 6.695(1) Å and c = 7.023(1) Å) was followed when heating up to 1250 °C. It was first dehydrated leading to the anhydrous thorium phosphate-hydrogenphosphate (TPHP, orthorhombic system with a = 21.229(2) Å, b = 6.661(1) Å and c = 7.031(1) Å at 220 °C) after heating between 180 and 200 °C. This one turned progressively into the new low-temperature variety of TPD (called α-TPD, orthorhombic system with a = 21.206(2) Å, b = 6.657(1) Å and c = 7.057(1) Å at 300 °C) correlatively to the condensation of hydrogenphosphate groups into diphosphate entities. These three phases (TPHPH, TPHP and α-TPD) exhibit closely related 2D layered structures, therefore different from the 3D structure of the thorium phosphate-diphosphate (high-temperature variety). This latter compound, now called β-TPD, was obtained by heating α-TPD above 950 °C. All the techniques involved in this study (XRD, Raman and IR spectroscopy, 1H and 31P NMR) confirmed the successive chemical reactions proposed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,