Article ID Journal Published Year Pages File Type
1492475 Materials Research Bulletin 2008 13 Pages PDF
Abstract

Thermal stability of as-received LiAlH4 and milled LiAlH4 has been investigated. The thermal decomposition mechanism of as-received LiAlH4 depends on the temperature–time history. Apparent activation energies and enthalpies of the reactions have been obtained. During milling treatment, the high temperature and pressures locally induced by shocks lead to LiAlH4 mechanically decomposition. The decomposition temperatures of LiAlH4 and Li3AlH6 are both reduced by ∼60 °C due to particle size reduction produced by mechanical milling. Besides, the activation energy of the decomposition reaction of LiAlH4 decreases as compared to as-received LiAlH4. Moreover, a layer of oxide (∼5 nm) at the surface of the milled alanate Li3AlH6 is observed. This layer could have a drastic influence on decomposition H-kinetics.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,