Article ID Journal Published Year Pages File Type
1493529 Optical Materials 2016 5 Pages PDF
Abstract

•LaPO4:Eu3+ with different morphologies were prepared by adjusting the amount of HNO3.•Catalyst, surfactant, or template were not used.•The effect of HNO3 on optical properties and structural stability were investigated in detail.

LaPO4:Eu3+ powders with different morphologies were hydrothermally constructed by adjusting the amount of HNO3 without using a catalyst, surfactant, or template. The as-prepared products were characterized by photoluminescence spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), infrared (IR) spectra, and X-ray photoelectron spectroscopy. The SEM study revealed that the amount of HNO3 played a crucial role in the morphology of the final products. The XRD results indicated that the as-prepared samples were in the monoclinic phase when 3 mL of HNO3 was used. The HR-TEM micrographs and SAED results demonstrated that the prepared nanorods were single and crystalline in nature with HNO3, and that they grew preferentially along the [0 1 2] direction. The emission spectra showed that the LaPO4:Eu3+ samples had the strongest emission intensity when prepared with HNO3.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,