Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1493693 | Optical Materials | 2015 | 8 Pages |
•Er3+/Ce3+ co-doped tellurite glass with B2O3 was prepared using melt-quenching method.•The large phonon energy induced by B2O3 promoted energy transfer from Er3+ to Ce3+.•1.53 μm fluorescence of Er3+ increased greatly with an enhanced phonon-assisted ET.•ET mechanisms were investigated quantitatively via calculating microscopic parameters.•1.53 μm band signal gain of Er3+/Ce3+ codoped tellurite glass fiber improved with B2O3.
Er3+/Ce3+ co-doped and B2O3 modified tellurite glasses with initial composition of TeO2–GeO2–Li2O–Nb2O5 were prepared using melt-quenching technique for potential applications in Er3+-doped fiber amplifiers (EDFAs) and lasers. The absorption spectra, fluorescence spectra, up-conversion spectra, Raman spectra and differential scanning calorimeter (DSC) curves of glass samples were measured to evaluate the effect of B2O3 modification on the 1.53 μm band spectroscopic properties of Er3+, structural nature and thermal stability of glass hosts. It was shown that the introduction of an appropriate amount of B2O3 oxide can further improve the 1.53 μm band fluorescence emission through an enhanced phonon-assisted energy transfer (ET) from Er3+ to Ce3+ ions under the excitation of 980 nm, and the quantitative studies were carried out to elucidate the ET mechanism via calculating the microscopic parameters and phonon contribution ratios. Meanwhile, the thermal stability of glass hosts increases slightly with the introduction of B2O3 oxide. Furthermore, the 1.53 μm band optical signal amplification was simulated based on the rare-earth ion rate and light power propagation equations. An increment in signal gain by about 1.4 dB at 1532 nm was observed in the Er3+/Ce3+ co-doped tellurite glass fiber containing 6 mol% amount of B2O3 oxide, and the maximum signal gain reaches to 31 dB on a 50 cm fiber pumped at 980 nm with power 200 mW. The present results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass modified by an appropriate amount of B2O3 oxide has good prospect as a gain medium applied for 1.53 μm band EDFAs and lasers.