Article ID Journal Published Year Pages File Type
1493835 Optical Materials 2015 8 Pages PDF
Abstract

•We confirm the energy transfer from Sm3+ to Eu3+ ions in PEO + PVP polymer film.•Luminescence of Eu3+ ions has significantly improved with addition of Sm3+ ions.•Energy transfer process has extensively studied from PL and life time decay dynamics.•Polymer films could be suggested as potential Red luminescent optical materials.

Eu3+:PEO + PVP, Sm3+:PEO + PVP and co-doped Sm3+ + Eu3+:PEO + PVP polymer films have successfully been synthesized by solution casting method. For these polymer films, their XRD, FTIR and RAMAN spectral profiles were studied systematically. Both absorption and photoluminescence spectra have been assessed by evaluating their optical properties. The Sm3+:PEO + PVP and Eu3+:PEO + PVP polymer film has displayed a reddish-orange and red emissions at 596 nm and 619 nm respectively under an UV lamp. A reddish-orange emission was found for Sm3+:PEO + PVP polymer film at 596 nm (4G5/2 → 6H7/2) and its lifetime has also been evaluated suitably. Red emission at 619 nm (4G5/2 → 6H7/2) of Eu3+ has been identified for Eu3+:PEO + PVP polymer film and its lifetime are also evaluated. The photoluminescence efficiency of Eu3+ ion has been enhanced due to the addition of Sm3+ by means of an energy transfer process. The energy transfer mechanism, from Sm3+ to Eu3+ has been clearly established. At 0.1 wt% concentration of Sm3+ ions (sensitizer), the photoluminescence efficiency of the Eu3+ ion (activator) has been significantly enhanced in co-doped sample through energy transfer from Sm3+ to Eu3+ in the polymer matrix. The energy transfer process has been analyzed using lifetime decay dynamics. From the obtained results, these polymer materials could be proposed as potential Red luminescent optical materials.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (294 K)Download as PowerPoint slide

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,