Article ID Journal Published Year Pages File Type
1495809 Optical Materials 2012 6 Pages PDF
Abstract

Multi-wall carbon nanotubes (MWCNTs) coated with crystalline Au nanoparticles, TiO2 nanoclusters, and amorphous SiO2 nanoshells, to represent conductors, semiconductors, and insulators, respectively, were embedded in transparent silica gel-glass. The coated MWCNT/silica gel-glasses were prepared by the sol–gel technique. Scanning electron microscopy (SEM), X-ray diffraction (XRD), UV/Vis spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy and pore structure measurements were used to investigate the morphology, structure, and texture properties of the coated MWCNT/silica gel-glasses. The hardness and elastic modulus of the silica gel-glasses were characterized using a Nanoindenter and found to depend on the coating materials. Coating the MWCNTs with crystalline Au nanoparticles, TiO2 nanoclusters, and amorphous SiO2 nanoshells leads to an increase in the hardness and elastic modulus, despite the higher specific surface area and pore volume of the coated MWCNT/silica gel-glasses. Consequently, we can conclude that the mechanical properties of coated MWCNT/silica gel-glass might be greatly dependent on the guest MWCNTs rather than the silica gel matrix.

► MWCNTs coated nanocomposites were embedded in silica gel-glass. ► The mechanical properties of the gel-glasses were related on the coating materials. ► Coating leads to the hardness and elastic modulus of the gel-glasses increase.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,