| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1497705 | Optical Materials | 2006 | 4 Pages |
Colloidal TiO2 was prepared by hydrolyzing tetra-n-butyl titanate. Composite multilayer films of poly(sodium 4-styrenesulfonate) (PSS) and colloidal TiO2 particles were layer-by-layer assembled onto optic fibers and microscope glass slides. As the PSS/TiO2 film was deposited onto the end face of a glass fiber, the reflected optic intensity periodically oscillated as the bilayer number of the film increased. After a 24-bilayer film was coated onto the both sides of a glass slide, the transmittance at 850 nm decreased more than 20%, which means that the film could serve the function as a reflection-enhancing coating. X-ray diffraction analysis and data of TEM electron diffraction analysis show that the colloidal TiO2 particles are mainly brookite nanocrystals and that the PSS/TiO2 films are polycrystalline films. Scratching experiments indicate that the composite films are of relatively high hardness.
