Article ID Journal Published Year Pages File Type
1499093 Scripta Materialia 2012 4 Pages PDF
Abstract

Since the stacking fault energy significantly influences the deformation mechanisms of Fe–Mn–Al–Si twinning-induced plasticity steels, two methods for its experimental determination by transmission electron microscopy of dislocations, namely the size of extended nodes and the separation of Shockley partials, were evaluated for an Fe–24.7Mn–2.66Al–2.92Si (wt.%) alloy. Measurement of partial dislocation separation provided the most reliable results, yielding a stacking fault energy of ∼16 mJ m−2, which is comparable to recent experimental and theoretical values for similar alloys.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,