Article ID Journal Published Year Pages File Type
1502328 Scripta Materialia 2009 4 Pages PDF
Abstract

The direct bonding of macroscopically patterned silicon wafers is studied with a cohesive zone model (CZM), the form and key parameters of which are obtained from molecular dynamics simulations. The CZM is implemented in a spectral scheme. For the case of ideally flat wafer surfaces investigated here, the results are consistent with previous work in which the CZM was derived from an assumption of a continuum water film. This multiscale approach has the potential to model directly the effects of surface roughness, nanotopography and small-scale patterning on the efficacy of direct wafer bonding.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,