Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1503976 | Solid State Sciences | 2016 | 8 Pages |
•The structure and properties of (Mg1−xZnx)Al2O4 spinels were investigated.•Variations in Zn2+ amounts greatly change the photocatalytic properties.•MgAl2O4 band gap decreases with degrees of Al3+ ions inversion increasing.•Zn2+ additions decrease the degrees of Al3+ ions inversion.
Mg1−xZnxAl2O4 spinel nanoparticles with x = 0, 0.05, 0.10, 0.15 and 0.20 were prepared via the chemical coprecipitation method. The obtained samples were characterised by thermal gravimetric and differential scanning calorimetry, X-ray diffraction, Fourier transform infrared spectroscopy, UV–Vis diffuse reflection spectrum, transmission electron microscopy and 27Al MAS-NMR spectroscopy. Mg1−xZnxAl2O4 spinel powders with the mean crystallite size of around 11 nm–14 nm were obtained. The crystallinity of the MgAl2O4 samples increases with the increase in the calcination temperature. At the same calcination temperature, higher amount of Zn2+ substitution leads to the higher level of crystallinity, but has no apparent influence on the mean crystallite size of the samples. The photocatalytic activity of the obtained Mg1−xZnxAl2O4 spinel nanoparticles was evaluated by monitoring the degradation of methylene blue under UV light. The degradation rates of methylene blue using the MgAl2O4 nanoparticles prepared at the calcination temperatures of 700 °C and 800 °C are much higher than those prepared at 900 °C and 1000 °C. The photocatalytic activities of the spinel powders with lower level of Zn2+ substitution such as Mg0.95Zn0.05Al2O4 are inferior to that of MgAl2O4. Results of 27Al MAS-NMR spectroscopy analysis and the first principle total density of state calculations reveal that this is probably due to the substitutions of Zn2+ decreasing the degree of Al3+ ions inversion over the sites of tetrahedral and octahedral coordination. With the increase in the amounts of Zn2+ substitution, the effects of Zn2+ additions on the photocatalytic activities become gradually predominant, leading to the increases in the degradation rates. The methylene blue degraded by 99% within 4 h using the Mg0.8Zn0.2Al2O4 spinel powders.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide