Article ID Journal Published Year Pages File Type
1505562 Solid State Sciences 2010 5 Pages PDF
Abstract

The urchin-like Bi2S3 nanostructures have been grown by a facile environmentally friendly hydrothermal method. X-ray diffraction (XRD) and Raman spectrum demonstrate that the obtained samples are composed of pure orthorhombic phase Bi2S3. Scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) images reveal that it is produced as uniform urchin-like pattern with spherical symmetry. High-resolution (HR) TEM and selected-area electron diffraction (SAED) demonstrate that the nanowires which grow radially from the center of the urchin-like nanostructures toward all directions are single-crystalline and grow along the [001]. It is found that the reaction time, reaction temperature and thiourea (Tu) play key roles for the formation of urchin-like Bi2S3 nanostructures. The formation mechanism is ascribed to self-assembly and the intrinsic splitting character of the Bi2S3 structure. The urchin-like Bi2S3 composed of porous nanorods, solid nanorods and nanowires could be found potential application in optical, catalysts and sensor devices.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,