Article ID Journal Published Year Pages File Type
1506035 Solid State Sciences 2010 6 Pages PDF
Abstract

Ab initio density functional theory (DFT) and density function perturbation theory (DFPT) have been used to investigate the thermal properties of the Al–Mg–Sc, Al–Mg–Zr and Al–Mg–Sc–Zr alloys over a wide range of temperature and pressure. Phonon dispersions are obtained at equilibrium and strained configurations by DFPT. Using the quasiharmonic approximation (QHA) for the free energy, several physical quantities of interest such as thermal Grüneisen parameter, heat capacity at constant pressure and at constant volume, thermal expansion coefficient, entropy, adiabatic bulk modulus and isothermal bulk modulus as a function of temperature and pressure are calculated and discussed. The present results show that the thermal expansion coefficient of the Al–Mg–Sc–Zr is far lower than that of Al–Mg–Sc and Al–Mg–Zr, and the variation features in the adiabatic bulk modulus and isothermal bulk modulus for the Al–Mg–Sc–Zr are also very different from that of Al–Mg–Sc and Al–Mg–Zr.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,