Article ID Journal Published Year Pages File Type
1506100 Solid State Sciences 2009 11 Pages PDF
Abstract

Hierarchically structured mesoporous MnO2 with high surface area was prepared by a facile precursor route. Well-defined morphological manganese oxalate, synthesized by adding l-lysine via a hydrothermal method, was used as precursor. Mesoporous amorphous MnO2 with high Brunauer–Emmett–Teller (BET) surface area (340 m2/g) and mesoporous Mn2O3 composed of nano-crystals (BET surface area 188 m2/g) were obtained by selective calcination of the oxalate precursor at 330 °C and 400 °C, respectively. Thermogravimetric and differential thermal analyses (TG–DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2-sorption analysis and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and property of products. Cyclic voltammetry (CV) and charge–discharge measurements were used to preliminarily study the electrochemical performance of the products. The range of pH value (about 5.0–7.0) in the synthesis process is apt to prepare the hierarchical structured manganese dioxide. Other types of amino acids were also employed as the crystallization modifiers and different morphologies of manganese dioxides were obtained.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,