Article ID Journal Published Year Pages File Type
1506159 Solid State Sciences 2010 8 Pages PDF
Abstract

Nd3+-doped precursor glass in the K2O–SiO2–Y2O3–Al2O3 (KSYA) system was prepared by the melt-quench technique. The transparent Y3Al5O12 (YAG) glass–ceramics were derived from this glass by a controlled crystallization process at 750 °C for 5–100 h. The formation of YAG crystal phase, size and morphology with progress of heat-treatment was examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transformed infrared reflectance spectroscopy (FT-IRRS). The crystallite sizes obtained from XRD are found to increase with heat-treatment time and vary in the range 25–40 nm. The measured photoluminescence spectra have exhibited emission transitions of 4F3/2 → 4IJ (J = 9/2, 11/2 and 13/2) from Nd3+ ions upon excitation at 829 nm. It is observed that the photoluminescence intensity and excited state lifetime of Nd3+ ions decrease with increase in heat-treatment time. The present study indicates that the incorporation of Nd3+ ions into YAG crystal lattice enhance the fluorescence performance of the glass–ceramic nanocomposites.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,