Article ID Journal Published Year Pages File Type
1506398 Solid State Sciences 2010 6 Pages PDF
Abstract

In this paper, spherical Pr3+-doped CaTiO3 phosphor particles were fabricated through a two-step spray pyrolysis process, using citric acid and polyethylene glycol (PEG) as additives. X-ray diffraction (XRD), scanning electron microscopy (SEM), High-resolution transmission electron microscopy (HRTEM), thermogravimetric and differential thermal analysis (TG–DTA), X-ray photoelectron spectra (XPS), photoluminescence (PL), cathodoluminescence (CL) spectroscopy, and lifetime measurements were employed to characterize these samples. The results reveal that the as-prepared CaTiO3:Pr3+ phosphors are spherical with submicron particle size. The particles show a strong red emission corresponding to 1D2–3H4 (612 nm) of Pr3+ under the ultraviolet excitation (325 nm) and low voltage electron beams (1–5 kV). Furthermore, the morphology, PL and CL intensities of the CaTiO3:Pr3+ phosphors can be tuned by altering the concentration of PEG, annealing temperature, and acceleration voltage. These phosphors show potential applications in the field of field emission displays (FEDs).

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,