Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1506830 | Solid State Sciences | 2007 | 7 Pages |
(Ba,Ti)-precursor complexes, important for the production of advanced BaTiO3 perovskite-type materials, undergo structural transformations and complex reactions during their thermal decomposition. Based on XRD phase analysis, combined with Rietveld refinement of crystal structure data, and on IR analysis, the intermediate formation of calcite-type BaCO3 is evidenced, which can be explained by the stabilization of this metastable modification in the form of an oxycarbonate phase down to room temperature. Two possible processes, leading to such an oxycarbonate, are discussed: (i) partial substitution of CO32− by O2− in the anionic sublattice, and (ii) topotaxial formation of calcite-type structural domains of BaCO3 by templating with oxygen-deficient titanates, resulting in the oxide–carbonate intergrowth structures.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide