Article ID Journal Published Year Pages File Type
1506945 Solid State Sciences 2006 11 Pages PDF
Abstract
Crystal structure of the 2-aminopyrimidinium derivatives: [(2-NH2C4N2H3)2H][ClO4] (I) and [2-NH2C4N2H4][BF4] (II) has been determined at 100 K (I) and 293 K (II) by means of single crystal X-ray diffraction as monoclinic space group, P2/c and P21/n, respectively. The asymmetric part of the unit cell of (I) contains two symmetry independent 2-aminopyrimidine forming one dimeric cation and one disordered perchlorate anion. The structure of (II) consists of 2-aminopyrimidinium cation, [2-NH2C4N2H4]+, protonated at a pyrimidine ring-N atom and [BF4]− anion. Differential scanning calorimetry (DSC) on perchlorate derivative (1:1), [2-NH2C4N2H3][ClO4] (III)-being isomorphic to tetrafluoroborate one (I) at room temperature, reveals two phase transitions of first order: at 250/275 K and 390/410 K (cooling-heating, respectively), whereas the analog (II) only one transition at high temperatures-343/385 K. The dielectric studies in the frequency range 75 kHz - 10 MHz disclose relaxation process at high temperatures in salt (I). Infrared spectra of polycrystalline [2-NH2C4N2H4][BF4] have been studied in the temperature range 300-420 K. Substantial changes in the temperature evolution of frequencies of internal modes of the 2-aminopyrimidinium cations and [BF4]− anions near 390 K are due to the variations in the motion of both moieties and hydrogen bond configuration. The experimental studies indicate that all phase transitions taking place in studied 2-aminopyrimidinium derivatives are classified as an order-disorder.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,