Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1507208 | Cryogenics | 2016 | 7 Pages |
To cool far infrared detectors for infrared observation or superconductor–insulator–superconductor (SIS) mixers for atmospheric observation, 1 K-class and 4 K-class coolers have been developed. These coolers consist of a two-stage Stirling cooler for pre-cooling and a Joule–Thomson (JT) cooler with a single JT valve. This paper presents descriptions of theoretical analyses based on enthalpy balance to elucidate the benefits of a two-stage JT valve type compared with those of a single JT valve type in a JT cooler. First, relational expressions for heat balance analysis of enthalpy for single-stage JT expansion are introduced. Then similar relational expressions for two-stage JT expansion are introduced under some assumptions. Results of heat balance analyses using several parameters demonstrated that, using two-stage JT expansion, the cooling capacity for a 1 K-class cooler is improved by 100%; that of a 4 K-class cooler is improved by about 30%.