Article ID Journal Published Year Pages File Type
1508388 Cryogenics 2007 9 Pages PDF
Abstract

This paper describes a steady numerical flow model and experimental gas flow results of a self-encapsulated, piezoelectrically actuated, cryogenic micro-valve for distributed cooling applications. Experimental flow data of the prototype micro-valve design is obtained for various gases at room temperature and for helium at near liquid nitrogen temperature. With a pressure differential of 100 kPa across the inlet and outlet, a prototype micro-valve is shown to modulate the flow of room temperature helium from 1200 to 0 sccm. Numerical flow results and experimental data agree well, with 60% of the data points falling within the range of ±10%.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , ,