Article ID Journal Published Year Pages File Type
1509170 Energy Procedia 2015 10 Pages PDF
Abstract

In this paper, a dataset of 92,906 dwellings was analysed adopting data mining techniques for the classification of heating and domestic hot water primary energy demand and for the evaluation of the most influencing factors. The sample was classified in three energy demand categorical variables (Low, Medium, High) considering different geometrical and physical attributes. The output of the model made it possible to set reference threshold values among the physical variables. Moreover, high energy demand dwellings were analysed in depth using a k-means algorithm in order to evaluate the design variables which need to be considered in a refurbishment process.

Related Topics
Physical Sciences and Engineering Energy Energy (General)