Article ID Journal Published Year Pages File Type
1509578 Energy Procedia 2015 6 Pages PDF
Abstract

Thermoelectric materials which can generate electricity from heat-waste ambient sources could play an important role to unleash the next shift in ultra-low power portable electronic applications. Thermal Energy (TE) harvesting can be characterized using Seebeck coefficient which is greatly dependent on the materials properties. In this paper, a prototype of a graphene based thermoelectric generator (TEG) is being fabricated using a facile and cost effective fabrication process. Further, Seebeck coefficient and surface resistance responses are experimentally measured for a varying number of graphene layers ranging mostly from 50 to 1000 layers. The results show that a Seebeck coefficient with an average of 90 μV/K is generated. In addition, the surface resistance is 10.3 and 0.03 kΩ/cm at the 50 and 1000 layers, respectively. As such, if graphene films are closely stacked together, they could potentially be used to generate enough power for running small ultra-low power operations with minimum cost in a wide variety of applications for both research and industry.

Related Topics
Physical Sciences and Engineering Energy Energy (General)