Article ID Journal Published Year Pages File Type
1512791 Energy Procedia 2013 8 Pages PDF
Abstract

Calcium looping, CaL, is a new and rapidly developing technology that makes use of CaO as a high temperature regenerable sorbent of CO2. Previous theoretical and lab scale studies have shown that this technology could lead to a substantial reduction in the cost of CO2 capture and energy penalties because heat can be effectively recovered from this high temperature solid looping system. We report in this paper on the first results from a pilot plant designed to demonstrate the viability of postcombustion capture of CO2 using CaL under conditions comparable to those expected in a large scale plant. The pilot includes two interconnected circulating fluidized bed reactors of 15 m height: a CO2 absorber (carbonator) able to treat up to 2400 kg/h (equivalent to about 1.7 MWth), and an oxy-fired CFB calciner with a firing power between 1-3 MWth. CO2 capture efficiencies over 90% have been experimentally observed, including continuous operation with highly cycled solids in the system (i.e. with modest CO2 carrying capacities). SO2 capture is shown to be extremely high, with concentrations of SO2 well below 10 ppmv at the exit of the carbonator. Closure of carbon and sulfur balances is satisfactory. These results should be valuable base for model validation and scaling up purposes in future stages of the EU FP7 “CaOling” project, under which this investigation has been carried out.

Related Topics
Physical Sciences and Engineering Energy Energy (General)