Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1513083 | Energy Procedia | 2012 | 9 Pages |
The degradation of 2-amino-2-methyl-1-propanol (AMP) has been investigated in the presence of oxygen. AMP was not stable and the overall degradation rate of AMP was close to that of N-methyldiethanolamine (MDEA) under identical conditions. The primary degradation products identified by GC-MS were acetone, 2,4-lutidine and 4,4-dimethyl-2-oxazolidinone. The oxidative degradation rates of AMP strongly depended upon oxygen partial pressure. The effect of temperature on the overall degradation rates was also measured. No significant catalytic effect was observed when 0.1 mM ferrous oxalate (Fe C2O4) and 0.1 mM copper sulphate (CuSO4) were added into the AMP solutions, respectively, and the degradation rates of AMP show a weak dependence on a radical initiator. Carbon dioxide (CO2) was found to speed up the overall degradation rate of AMP.