Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1514533 | Energy Procedia | 2011 | 9 Pages |
Abstract
This paper presents a method for calculating the flow around a wind turbine rotor. The real flow is replaced by a free stream past a vortex model of the rotor. This model consists of lifting vortex lines which replace the blades and a trailing free vorticity. The vorticity shed from the blade is concentrated in two vortices issued from tip and root. To compute the unsteady forces exerted on the rotor, a free wake method is used. This method consists of a Lagrangian representation of the flow field. The evolution of the wake is obtained by tracking the markers representing the vortices issued from the blade tips and roots. To solve the wake governing equation and to obtain the marker positions, a time-marching method is applied and the solution is obtained by a second order predictor-corrector scheme. To validate the proposed method a comparison is made with experimental data obtained in the case of a model of wind turbine where the flow field immediately behind the rotor is measured by means of PIV. It is shown that the numerical simulation captures correctly the near wake development. The comparison shows satisfactory accuracy for the velocity field downstream of the rotor.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Said Chkir,