Article ID Journal Published Year Pages File Type
1515246 Journal of Physics and Chemistry of Solids 2016 9 Pages PDF
Abstract

•Microwave-assisted glycine–nitrate process was used to synthesize Cu-CGO anode.•Microwave process produced Cu-CGO anode material with enhanced properties.•Cu-CGO powder synthesized by microwave process showed nano-sized grains.•The conductivity of Cu-CGO synthesized by microwave route was determined higher.

This work reports a study of nanostructured copper-doped gadolinium cermet (Cu-CGO) composite anodes prepared via conventional synthesis (CS) and microwave-synthesis (MS) involving the glycine–nitrate process (GNP). A detailed investigation on the mechanical properties, electrical conductivity and electrochemical performance of prepared Cu0.5(Ce0.9Gd0.1)0.5O2−δ anodes is included. The prepared samples were characterized by techniques, such as XRD, EDX, SEM and electrical characterizations. After reduction in 10% H2 and 90% N2, the DC conductivities of the Cu-CGO anodes prepared via CS-GNP and MS-GNP are found to be 5.43×103 and 1.09×104 S cm−1 at 700 °C, respectively. The electrochemical performances of the spin-coated anode symmetrical cells sintered at 700 °C are evaluated at cell operating temperatures of 600, 700 and 800 °C. The lowest area specific resistance (ASR) values for the Cu-CGO/CGO/Cu-CGO symmetrical cells prepared via the MS-GNP route at operating temperatures of 600, 700 and 800 °C are found to be 0.34, 0.71 and 1.10 Ω cm2, respectively. The as-prepared (via MS-GNP) Cu-CGO anode exhibits excellent electrical and electrochemical performance consistent with the uniform nanostructured morphology compared with the anode prepared via CS-GNP.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,