Article ID Journal Published Year Pages File Type
1515651 Journal of Physics and Chemistry of Solids 2014 7 Pages PDF
Abstract

•The sample studied has very low dielectric loss.•A small amount of remnant polarization is found.•The sample is found to show semiconducting property.•A weak ferromagnetism is seen.

Polycrystalline (Bi0.6K0.4) (Fe0.6Nb0.4)O3 material has been prepared using a mixed-oxide route at 950 °C. It was shown by XRD that at room temperature structure of the compound is of single-phase with hexagonal symmetry. Some electrical characteristics (impedance, modulus, conductivity etc.) were studied over a wide frequency (1 kHz–1 MHz) and temperature (25–500 °C) ranges. The Nyquist plot (i.e., imaginary vs real component of complex impedance) of the material exhibit the existence and magnitude of grain interior and grain boundary contributions in the complex electrical parameters of the material depending on frequency, input energy and temperature. The nature of frequency dependence of ac conductivity follows Joncher׳s power law, and dc conductivity follows the Arrhenius behavior. The appearance of P–E hysteresis loop confirms the ferroelectric properties of the material with remnant polarization (2Pr) of 1.027 µC/cm2 and coercive field (2Ec) of 16.633 kV/cm. The material shows very weak ferromagnetism at room temperature with remnant magnetization (2Mr) of 0.035 emu/gm and coercive field (2Hc) of 0.211 kOe.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,