Article ID Journal Published Year Pages File Type
1515680 Journal of Physics and Chemistry of Solids 2015 6 Pages PDF
Abstract

•Assembled by exfoliated trititanate nanosheets and CdS nanosol particles.•Pillared nanohybrids exhibit superior photocatalytic activity in H2 evolution.•Solid state Z-scheme mechanism plays a crucial role in the hydrogen evolution.

Heterostructured CdS-pillared H2Ti3O7 nanohybrids were prepared by the self-assembly of exfoliated trititanate nanosheets and CdS nanosol particles under the electrostatic interactions. It was revealed that the present nanohybrids were mesoporous with specific surface areas of about 90 m2 g−1. The nanohybrids exhibited high photocatalytic activity and good recurrence stability in the H2 evolution from water splitting. When the preparation molar ratio of H2Ti3O7/CdS was 2:1, the nanohybrid reached a high H2-evolution rate of 1523 μmol h−1 g−1 under a 300 W Xe lamp irradiation, which was 13 times higher than the bare CdS. Apart from the wider spectral responsive range, the superior photocatalytic performance of the nanohybrids was predominantly attributed to the efficient photogenerated charge separation between the trititanate nanosheets and the encapsulated CdS nanoparticles.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,