Article ID Journal Published Year Pages File Type
1516831 Journal of Physics and Chemistry of Solids 2011 6 Pages PDF
Abstract

We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc superconductivity (HTSC) for a disorder-free CuO2 plane based on an evaluation of local hole density (p) by site-selective Cu-NMR studies on multilayered copper oxides. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO2 plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO2 plane in an underdoped regime of HTSC. The T=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This Mott physics plays a vital role for mediating the Cooper pairs to make Tc of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in Tc is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle αα of the FeAs4 tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make Tc higher significantly.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,