Article ID Journal Published Year Pages File Type
1517154 Journal of Physics and Chemistry of Solids 2010 5 Pages PDF
Abstract
Crystallization kinetics of the Se85S10Sb5 chalcogenide glassy alloy is studied by differential scanning calorimeter (DSC) non-isothermally. The glassy state of the as-prepared sample and the crystalline phases of the heat treated sample are characterized using X-ray diffraction. The glass transition activation energy Eg is found to be 65.2±0.8 kJ/mol and the crystallization activation energies for the first and the second crystallization peaks (Ec1 and Ec2) are found to be 70±0.8 and 85.2±0.8 kJ/mol, respectively. The determined kinetic parameters have made it possible to postulate the type of crystal growth exhibited in the crystallization process. The phases at which the alloy crystallizes after the thermal process have been identified by X-ray diffraction. The diffractogram of the transformed material indicates the presence of nanocrystallites of Sb2Se3, Se-S and Se, with a remaining additional amorphous matrix.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,