Article ID Journal Published Year Pages File Type
1517192 Journal of Physics and Chemistry of Solids 2008 4 Pages PDF
Abstract

High-purity ZnO nanowires have been synthesized on Si substrates without the presence of a catalyst at 600 °C by a simple thermal vapor technique. Photoluminescence (PL) spectra of the annealed samples at 900 °C under oxygen and argon gases have been investigated. After O2 or Ar annealing, the PL visible-emission intensity that is related to intrinsic defects (oxygen vacancies) is greatly reduced compared with as-grown ZnO nanowires because the oxygen-gas ions or oxygen interstitials diffuse into the oxygen vacancies during annealing process. The blue-band peak of the O2- or Ar-annealed ZnO naonowires is also smaller than the green-band peak in the visible broadband because of the reduction of oxygen vacancies. Therefore, the main intrinsic defects (oxygen vacancies) of as-grown ZnO nanowires can be reduced by O2 or Ar annealing, which is an important procedure for the development of advanced optoelectronic ZnO nanowire devices.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,