Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1517313 | Journal of Physics and Chemistry of Solids | 2010 | 4 Pages |
Abstract
N-doped titania was prepared continuously by one-step synthetic method under supercritical and subcritical water conditions using titanium(IV)tetraisopropoxide (TTIP) and nitric acid as a titania precursor and nitrogen source, respectively. The synthesized N-doped titania particles were characterized by XRD, N2-adsorption, TEM, XPS, UV-vis diffuse reflectance spectroscopy. N-doped titania was successfully synthesized and its crystalline structure was homogenous anatase phase with high surface area. The absorption edge of synthesized N-doped titania shifted into the visible light region compared with commercial titania P25. All synthesized N-doped titania have higher photocatalytic activity than P25 under visible light irradiation. The photocatalytic activity of N-doped titania synthesized under supercritical water condition was the highest for the degradation of methyl orange under visible light due to the larger crystallite size compared with the N-doped titania synthesized under subcritical water condition.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Ju-Won Jeon, Jeong-Rang Kim, Son-Ki Ihm,