Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1517711 | Journal of Physics and Chemistry of Solids | 2008 | 7 Pages |
Abstract
Semiconductor-like thin films were grown using metallic phthalocyanines (MPc) (M=Fe, Pb, Co) and 1,8 dihydroxiantraquinone as initial compounds. The morphology of the deposited films was studied by using scanning electron microscopy and atomic force microscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, showed the same intra-molecular bonds as in IR spectroscopy studies, which suggests that the evaporation process does not alter these bonds. The optical band gap values of C60H28N8O8Fe, C60H28N8O8Pb and C60H28N8O8Co calculated from the absorption coefficient were found to be 1.60, 1.89 and 1.75 eV, respectively, arising from non-direct transitions. The effect of temperature on conductivity was also measured in these samples. It was found that the temperature-dependent electric current in all cases showed a semiconductor behavior with conductivities in the order of 10â6 Ωâ1 cmâ1 where the highest value corresponded to the cobalt material. The linear dependence observed in the films implies only one type of conduction mechanism in all cases, with mean activation energies of the order of 1.55, 1.77 and 1.50 eV for iron, lead and cobalt-based thin films, respectively.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
M.E. Sánchez Vergara, A. Ortiz Rebollo, J.R. Alvarez, M. Rivera,