Article ID Journal Published Year Pages File Type
1517788 Journal of Physics and Chemistry of Solids 2009 7 Pages PDF
Abstract

In this paper we report the effect of microstructural characteristics on the magnetic properties of sol–gel synthesized Mn-doped ZnO. The microstructural characteristics of the samples (e.g., grain sizes and their distribution) have been varied by changing the sintering temperature (TS) and sintering duration (TH). Weak room temperature ferromagnetism (RTFM) has been observed in the samples sintered for ∼8 h at 500, 600, 700, 800 and 900 °C. The ferromagnetic fraction and the saturation magnetization, however, first increase as TS increases from 500 to 600 °C and after that both start decreasing. On the other hand, the samples sintered for ∼12 h at the same temperatures show paramagnetic behavior at room temperature. Field emission scanning electron microscope (FESEM) results show enhancement in the grain sizes with the increase in both TS and TH. Energy dispersive X-ray (EDAX) results show increase in the oxygen content in the sample with increase in both TS and TH. X-ray diffractometer (XRD) measurements reveal that the basic crystal structure of all the samples corresponds to the wurtzite structure of pure ZnO together with some minor impurities. The correlation between the observed magnetic properties and the microstructural characteristics of the samples has been discussed in this paper.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,