Article ID Journal Published Year Pages File Type
1517803 Journal of Physics and Chemistry of Solids 2009 4 Pages PDF
Abstract

The nanotube with open edges is an excellent candidate for designing efficient tip for atomistic scanning probes or field emission display (FED) devices. In the present work, we have studied the functionalization of an open-ended boron nitride nanotube (BNNT) with a series of transition metal rings and the effects on the properties of open-ended BNNT through density functional theory (DFT) calculations. The results show that the TM-BNNT complexes are energetically favorable. Moreover, it is found that the functionalization (a) significantly decreases the band gap of BNNT to different degrees, which might effectively modify the electronic properties of the open-ended BNNT; and (b) efficiently lowers the work function, which might improve the field emission properties. Our results might be helpful not only to design specific BNNT-based tips but also to further discuss the chemical vapor deposition (CVD) growth of BNNT on nanoparticles.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,