Article ID Journal Published Year Pages File Type
1517996 Journal of Physics and Chemistry of Solids 2009 5 Pages PDF
Abstract

Pressure-induced structural phase transition of gadolinium monopnictides GdX (X=As and Sb) has been studied theoretically using an inter-ionic potential theory. This method has been found quite satisfactory in case of the pnictides of rare-earth and describes the crystal properties in the framework of rigid-ion model. We have modified the ionic charge so that it may include the Coulomb-screening effect by the delocalization of f electron of the rare-earth ion. The anomalous structural properties of these compounds with many f electrons have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Gd ion with the p orbital of neighbouring pnictogen ion. Both the compounds are found to undergo from their initial NaCl (B1) structure to body centered tetragonal (BCT) structure at high pressure and agree well with the experimental results. The BCT structure is viewed as distorted CsCl structure and is highly anisotropic with c/a=0.82–0.85. The nature of bonds between the ions is predicted by simulating the ion–ion (Gd–Gd and Gd–X) distance at high pressure. Elastic properties of these compounds have also been studied with their second-order elastic constants.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,