Article ID Journal Published Year Pages File Type
1518068 Journal of Physics and Chemistry of Solids 2006 8 Pages PDF
Abstract

We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch–Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order–disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,