Article ID Journal Published Year Pages File Type
1518397 Journal of Physics and Chemistry of Solids 2007 6 Pages PDF
Abstract

One important application area of chalcogenide materials is rewritable optical data storage. This technology is based on a reversible phase transition between the crystalline and the amorphous state and vice versa. Currently dominant materials for rewritable optical recording are Ge–Sb–Te and Ag–In–Sb–Te alloys. Material research still continues due to the need for increasing storage capacity and data rates. Polycrystalline bulks of AgSbS2 were prepared by melt-quench technique. Composition and homogeneity of these bulks were checked by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), crystallinity was studied by X-ray diffraction (XRD). Targets for RF magnetron sputtering were prepared from pulverized bulks by hot-pressing technique. Targets were characterized the same way as bulks. Thin Ag–Sb–S films were prepared by RF magnetron sputtering as potential candidates for rewritable optical data storage films. Composition and homogeneity of prepared thin films were characterized by SEM-EDX, Rutherford Back Scattering (RBS) and Elastic Recoil Detection Analysis (ERDA); character (amorphous/crystalline) was traced by XRD. Optical properties (spectral dependence of refractive index) were evaluated on the basis of UV–Vis–NIR spectroscopy and variable angle spectral ellipsometry (VASE). Crystallization abilities were studied by the measurement of thermal dependence of the prepared thin films optical transmission.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , ,