Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1522569 | Materials Chemistry and Physics | 2013 | 8 Pages |
Abstract
It is significant interest in developing novel multifunctional nanocarrier with complementary roles in recent years. Magnetic Fe3O4/graphene oxide (GO) nanocomposites with integrated characteristics of magnetic resonance imaging (MRI) and controlled drug delivery were prepared by an inverse co-precipitation method. The microstructure and physical properties of Fe3O4/GO nanocomposites were investigated by transmission electron microscope, wide-angle X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analyzer and superconducting quantum interference device magnetometer. The obtained nanocomposites exhibited superparamagnetic property with the saturation magnetization of 63.3 Am2 kgâ1 at room temperature. In vitro MRI experiments revealed that Fe3O4/GO nanocomposites possessed an excellent MRI enhancement effect. 5-Fluorouracil (5-FU) as an anti-tumor model drug was loaded onto the surface of Fe3O4/GO nanocomposites. The drug loading capacity of this nanocarrier was as high as 0.37 mg mgâ1 and the drug release behavior showed pH-dependence. The results suggested that the as-prepared Fe3O4/GO nanocomposites showed great potential as an effective multifunctional nanoplatform for MRI and controlled drug delivery.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Guangshuo Wang, Guangyi Chen, Zhiyong Wei, Xufeng Dong, Min Qi,