Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1523202 | Materials Chemistry and Physics | 2013 | 7 Pages |
As one of the most promising candidates, graphene exhibits a potential application in post-silicon nanoelectronics. However, it is a key issue to produce high-quality graphene in large scale. Here, a facile method is demonstrated to produce graphene dispersions by exfoliation of expanded graphite in the co-solvent with N,N-dimethylformamide (DMF) and water. We confirm that the optimal ratio of DMF to water for graphene exfoliation is 9:1 (v:v) by means of UV–Vis absorption spectra. This exfoliation results in large flakes ∼2 μm in diameter, which can potentially be improved by adjusting the sonication power. The relatively perfect hexagonal structure of graphene is confirmed by Raman spectroscopy and the as-prepared graphene nanosheet film the as-prepared graphene nanosheet film possesses good electrical conductivity (∼8.3 × 103 S m−1). DC electrical transport phenomena for the deposited film of graphene nanosheets are well described in terms of conduction models for non-crystal semiconductor. This convenient approach provides an extensive route to prepare high-quality graphene nanosheets.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide