Article ID Journal Published Year Pages File Type
1523416 Materials Chemistry and Physics 2012 8 Pages PDF
Abstract

Composites of polyindole (PIn), a conducting polymer, with carboxylated-multiwalled carbon nanotubes (c-MWCNT/PIn) were synthesized; the synthesis was done using (i) two miscible solvents (in-situ method) and (ii) two immiscible solvents (interfacial method). A tubular composite, with a uniform coating of the polymer over c-MWCNTs, was observed in the case of interfacial synthesis. However, the in-situ synthesis of c-MWCNT/PIn composites exhibited a densely packed spherical morphology, with c-MWCNT incorporated within the polymer spheres. The spherical morphology was probably obtained due to fast polymerization kinetics and the formation of micelles in case of in-situ polymerization, whereas tubular morphology was obtained in case of interfacial polymerization due to the sufficient time provided for the growth of polymer chains over the c-MWCNT surfaces. Nanoscale electrical properties of composites, in a metal/(c-MWCNT/PIn) configuration, were studied using current sensing atomic force microscopy. Interfacial c-MWCNT/PIn composite, on Al metal substrate, exhibited a typical rectifying diode behavior. This composite had manifested enormous potential for electronic applications and fabrication of nanoscale organic devices.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Polyindole/c-MWNT nanocomposites produced by in-situ and interfacial polymerization. ► Densely packed spherical morphology was observed in in-situ polymerization route. ► Tubular core-shell morphology was observed in interfacial polymerization route. ► Interfacial nanocomposite manifested a nano-schottky junction with Al metal.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,