Article ID Journal Published Year Pages File Type
1524438 Materials Chemistry and Physics 2010 7 Pages PDF
Abstract

Porous La0.8Sr0.2MnO3 (LSMO) films have been prepared by metal organic chemical vapor deposition (MOCVD) technique for solid oxide fuel cell (SOFC) applications. LSMO samples have been deposited on yttria-stabilized zirconia (YSZ) electrolyte pellets. The adopted in situ strategy involves a molten mixture consisting of the La(hfa)3·diglyme, Sr(hfa)2·tetraglyme, and Mn(tmhd)3 [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; diglyme = bis(2-methoxyethyl)ether; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione] precursors. It has been shown that porous LSMO films can be obtained through an accurate tuning of processing parameters, which affect the nucleation and growth processes. The structural and compositional characterizations of these films, carried out by X-ray diffraction (XRD) and energy dispersive X-ray analysis, point to the formation of a single polycrystalline La0.8Sr0.2MnO3 phase. The field emission scanning electron microscopy (FE-SEM) images confirm the formation of porous films. To evaluate the electrochemical activity of the cathodic films, an investigation by impedance spectroscopy (IS) has been performed.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,