Article ID Journal Published Year Pages File Type
1525030 Materials Chemistry and Physics 2010 9 Pages PDF
Abstract

Mn-doped zinc oxide (Mn:ZnO) nanorods were synthesized by incorporating manganese in aligned ZnO nanorods. For this, Mn was evaporated onto ZnO nanorods and the composite structure was subjected to rapid thermal annealing. The nanorods were preferentially oriented in (0 0 2) direction as indicated by the XRD measurement. Optical band gap was seen to decrease with increasing amount of Mn incorporation. XPS studies indicated that incorporated Mn was in Mn2+ and Mn4+ states. Mn2+ atomic concentration was found to be larger than Mn4+ concentration in all the samples. The Raman spectra of the Mn:ZnO nanorods indicated the presence of the characteristic peak at ∼438 cm−1 for high frequency branch of E2 mode of ZnO. The PL peak at ∼376 nm (∼3.29 eV) was ascribed to the band edge luminescence while the peak at ∼394 nm (∼3.15 eV) was assigned to the donor bound exciton (DoX) and free exciton transition related to Mn2+ states.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,