| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1525366 | Materials Chemistry and Physics | 2010 | 6 Pages |
A magnetic SO42−/ZrO2–B2O3–Fe3O4 solid superacid catalyst is prepared via a simple chemical co-precipitation approach. The obtained materials were characterized in detailed by X-ray powder diffraction, thermogravimetric analysis–different scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), electron microscopy (SEM and TEM), and Mossbauer spectra. Powder X-ray diffraction patterns show that in this composite oxide the transformation temperature of ZrO2 from tetragonal to monoclinic phase is higher compared to the pristine SO42−/ZrO2 material. The introduction of Fe3O4 endows the superacid with a super-paramagnetic property while in a ferromagnetic state after calcination. The superacid exhibits high catalytic activity in forming ethyl acetate by esterification.
