Article ID Journal Published Year Pages File Type
1525367 Materials Chemistry and Physics 2010 6 Pages PDF
Abstract
This study examined the characterization of nanoporous structured titanium dioxide and its application to dye-sensitized solar cells (DSSCs). TEM revealed nanopore sizes of 10.0 nm with a regular hexagonal form. When nanoporous structured TiO2 was applied to DSSC, the energy conversion efficiency was enhanced considerably compared with that using nanometer sized TiO2 prepared using a hydrothermal method. The energy conversion efficiency of the DSSC prepared from nanoporous structured TiO2 was approximately 8.71% with the N719 dye under 100 mW cm−2 simulated light. FT-IR spectroscopy showed that the dye molecules were attached perfectly to the surface and more dye molecules were absorbed on the nanoporous structured TiO2 than on the nano-sized TiO2 particles prepared using a conventional hydrothermal method. Electrostatic force microscopy (EFM) showed that the electrons were transferred rapidly to the surface of the nanoporous structured TiO2 film.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,