Article ID Journal Published Year Pages File Type
1525861 Materials Chemistry and Physics 2009 5 Pages PDF
Abstract

Multi-walled carbon nanotubes (CNTs) were chemically activated using KOH in order to improve their specific surface area, electrical conductivity, and specific capacitance. Using such an activated CNT (A-CNT), a composite of MnO2/A-CNT was prepared by the coprecipitation method, and its physical and electrochemical properties were evaluated for use as an electrode material in supercapacitors. For comparison, a composite of MnO2/CNT was also prepared using an inactivated CNT and characterized in an aqueous solution of 1.0 M Na2SO4. The specific capacitances of the MnO2/A-CNT composite electrode, measured using cyclic voltammetry at scan rates of 10 and 100 mV s−1, were found to be 250 and 184 F g−1, respectively, compared to 215 and 138 F g−1, respectively, for the MnO2/CNT composite electrode. Because of CNT activation, the MnO2/A-CNT composite electrode showed an improved performance in both the capacitance and cycle performance, due to the alleviation of the accumulated stress during charge–discharge cycling.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,