Article ID Journal Published Year Pages File Type
1526021 Materials Chemistry and Physics 2009 5 Pages PDF
Abstract

NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO4)2:Eu3+ submicrometer phosphors have been synthesized by a composite technology involving hydrothermal process assisted solid state reaction at room temperature. It is revealed that crystalline water is necessary for the solid phase reaction at room temperature. The XRD patterns indicate that both NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO4)2:Eu3+ submicrometer phosphors crystallize well with the scheelite structure. Both SEM and TEM images illustrate that the average grain size of NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO4)2:Eu3+ is about 200 nm without conglomeration. The luminescent lifetimes and quantum efficiencies for NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO4)2:Eu3+ are determined, indicating that the introduction of Bi3+ is favorable for the luminescence of Eu3+.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,